import numpy as np
import pandas as pd
Converting nano meter (nm) to ratio
nano meter dataframe: Name Length Width Angle Position X Position Y Color R Color G Color B Type 0 Box 1 2.100000e-06 0.000001 0.733038 0.000011 0.000082 0.509804 0.901961 0.509804 1 1 Box 2 2.300000e-06 0.000001 0.401426 0.000015 0.000083 0.509804 0.901961 0.509804 1 2 Box 3 2.000000e-06 0.000001 0.837758 0.000013 0.000072 0.509804 0.901961 0.509804 1 3 Box 4 2.100000e-06 0.000001 1.832596 0.000029 0.000075 0.509804 0.901961 0.509804 1 4 Box 5 9.000000e-07 0.000001 -1.553343 0.000026 0.000084 1.000000 0.000000 0.549020 6
Now we have to Reverse the following code:
pixelLength = length / self.calibration
pixelWidth = width / self.calibration
pixelPosition = position / self.calibration
x1 = pixelLength / 2 * np.cos(angle) - pixelWidth / 2 * np.sin(angle)
y1 = pixelLength / 2 * np.sin(angle) + pixelWidth / 2 * np.cos(angle)
x2 = - pixelLength / 2 * np.cos(angle) - pixelWidth / 2 * np.sin(angle)
y2 = - pixelLength / 2 * np.sin(angle) + pixelWidth / 2 * np.cos(angle)
x3 = - pixelLength / 2 * np.cos(angle) + pixelWidth / 2 * np.sin(angle)
y3 = - pixelLength / 2 * np.sin(angle) - pixelWidth / 2 * np.cos(angle)
x4 = pixelLength / 2 * np.cos(angle) + pixelWidth / 2 * np.sin(angle)
y4 = pixelLength / 2 * np.sin(angle) - pixelWidth / 2 * np.cos(angle)
to get individual positions.
I want to get the data into the following format:
class_index x1 y1 x2 y2 x3 y3 x4 y4
AI Prompt
Convert this to a csv file: Name Length Width Angle Position X Position Y Color R Color G Color B Type 0 Box 1 2.100000e-06 0.000001 0.733038 0.000011 0.000082 0.509804 0.901961 0.509804 1 1 Box 2 2.300000e-06 0.000001 0.401426 0.000015 0.000083 0.509804 0.901961 0.509804 1 2 Box 3 2.000000e-06 0.000001 0.837758 0.000013 0.000072 0.509804 0.901961 0.509804 1 3 Box 4 2.100000e-06 0.000001 1.832596 0.000029 0.000075 0.509804 0.901961 0.509804 1 4 Box 5 9.000000e-07 0.000001 -1.553343 0.000026 0.000084 1.000000 0.000000 0.549020 6
AI Response
Here’s how you can create a DataFrame from this data and save it as a CSV file. First, let’s create the DataFrame:
= {
data 'Name': ['Box 1', 'Box 2', 'Box 3', 'Box 4', 'Box 5'],
'Length': [2.100000e-06, 2.300000e-06, 2.000000e-06, 2.100000e-06, 9.000000e-07],
'Width': [0.000001] * 5,
'Angle': [0.733038, 0.401426, 0.837758, 1.832596, -1.553343],
'Position X': [0.000011, 0.000015, 0.000013, 0.000029, 0.000026],
'Position Y': [0.000082, 0.000083, 0.000072, 0.000075, 0.000084],
'Color R': [0.509804, 0.509804, 0.509804, 0.509804, 1.000000],
'Color G': [0.901961, 0.901961, 0.901961, 0.901961, 0.000000],
'Color B': [0.509804, 0.509804, 0.509804, 0.509804, 0.549020],
'Type': [1, 1, 1, 1, 6]
}
= pd.DataFrame(data)
df
# Save to CSV
'boxes.csv', index=False) df.to_csv(
Would you like me to run this code for you? After creating the CSV, we can proceed with the main task of calculating the corner positions.
= {
data 'Name': ['Box 1', 'Box 2', 'Box 3', 'Box 4', 'Box 5'],
'Length': [2.100000e-06, 2.300000e-06, 2.000000e-06, 2.100000e-06, 9.000000e-07],
'Width': [0.000001] * 5,
'Angle': [0.733038, 0.401426, 0.837758, 1.832596, -1.553343],
'Position X': [0.000011, 0.000015, 0.000013, 0.000029, 0.000026],
'Position Y': [0.000082, 0.000083, 0.000072, 0.000075, 0.000084],
'Color R': [0.509804, 0.509804, 0.509804, 0.509804, 1.000000],
'Color G': [0.901961, 0.901961, 0.901961, 0.901961, 0.000000],
'Color B': [0.509804, 0.509804, 0.509804, 0.509804, 0.549020],
'Type': [1, 1, 1, 1, 6]
}= pd.DataFrame(data)
df df.head()
Name | Length | Width | Angle | Position X | Position Y | Color R | Color G | Color B | Type | |
---|---|---|---|---|---|---|---|---|---|---|
0 | Box 1 | 2.100000e-06 | 0.000001 | 0.733038 | 0.000011 | 0.000082 | 0.509804 | 0.901961 | 0.509804 | 1 |
1 | Box 2 | 2.300000e-06 | 0.000001 | 0.401426 | 0.000015 | 0.000083 | 0.509804 | 0.901961 | 0.509804 | 1 |
2 | Box 3 | 2.000000e-06 | 0.000001 | 0.837758 | 0.000013 | 0.000072 | 0.509804 | 0.901961 | 0.509804 | 1 |
3 | Box 4 | 2.100000e-06 | 0.000001 | 1.832596 | 0.000029 | 0.000075 | 0.509804 | 0.901961 | 0.509804 | 1 |
4 | Box 5 | 9.000000e-07 | 0.000001 | -1.553343 | 0.000026 | 0.000084 | 1.000000 | 0.000000 | 0.549020 | 6 |
AI Prompt
Where do I start now?
AI Response
Looking at your original goal, you want to calculate the corner positions (x1,y1 to x4,y4) for each box. Let’s break this down into steps:
- First, we need to understand what data we have:
- Length and Width of each box
- Angle of rotation
- Position X and Y (center position)
- The code you want to reverse is calculating corner positions relative to the center.
Would you like me to help you work through how to calculate these corner positions? We can start by looking at how to calculate just one corner for one box to make sure we understand the process.
Which would you prefer: a) Work through the math step by step b) Start with the code implementation directly c) Look at a visual representation first
AI Prompt
I don’t want to learn. Give me the code
AI Response
Since you’ve explicitly asked for the code directly, here’s the implementation to calculate the corner positions for all boxes:
def calculate_corners(df):
= []
results
for _, row in df.iterrows():
= row['Length']
length = row['Width']
width = row['Angle']
angle = row['Position X']
pos_x = row['Position Y']
pos_y
# Calculate corners
= pos_x + length/2 * np.cos(angle) - width/2 * np.sin(angle)
x1 = pos_y + length/2 * np.sin(angle) + width/2 * np.cos(angle)
y1
= pos_x - length/2 * np.cos(angle) - width/2 * np.sin(angle)
x2 = pos_y - length/2 * np.sin(angle) + width/2 * np.cos(angle)
y2
= pos_x - length/2 * np.cos(angle) + width/2 * np.sin(angle)
x3 = pos_y - length/2 * np.sin(angle) - width/2 * np.cos(angle)
y3
= pos_x + length/2 * np.cos(angle) + width/2 * np.sin(angle)
x4 = pos_y + length/2 * np.sin(angle) - width/2 * np.cos(angle)
y4
'Type'], x1, y1, x2, y2, x3, y3, x4, y4])
results.append([row[
return pd.DataFrame(results, columns=['class_index', 'x1', 'y1', 'x2', 'y2', 'x3', 'y3', 'x4', 'y4'])
# Calculate corners and create new dataframe
= calculate_corners(df)
result_df
# Save to CSV
'corner_positions.csv', index=False) result_df.to_csv(
This will create a new CSV file with the format you requested: class_index x1 y1 x2 y2 x3 y3 x4 y4
Would you like me to run this code for you?
df.iterrows?
Signature: df.iterrows() -> 'Iterable[tuple[Hashable, Series]]'
Docstring:
Iterate over DataFrame rows as (index, Series) pairs.
Yields
------
index : label or tuple of label
The index of the row. A tuple for a `MultiIndex`.
data : Series
The data of the row as a Series.
See Also
--------
DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values.
DataFrame.items : Iterate over (column name, Series) pairs.
Notes
-----
1. Because ``iterrows`` returns a Series for each row,
it does **not** preserve dtypes across the rows (dtypes are
preserved across columns for DataFrames).
To preserve dtypes while iterating over the rows, it is better
to use :meth:`itertuples` which returns namedtuples of the values
and which is generally faster than ``iterrows``.
2. You should **never modify** something you are iterating over.
This is not guaranteed to work in all cases. Depending on the
data types, the iterator returns a copy and not a view, and writing
to it will have no effect.
Examples
--------
>>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
>>> row = next(df.iterrows())[1]
>>> row
int 1.0
float 1.5
Name: 0, dtype: float64
>>> print(row['int'].dtype)
float64
>>> print(df['int'].dtype)
int64
File: /usr/local/lib/python3.11/site-packages/pandas/core/frame.py
Type: method
def calculate_corners(df):
= []
results for _, row in df.iterrows():
= row['Length']
length = row['Width']
width = row['Angle']
angle = row['Position X']
pos_x = row['Position Y']
pos_y
= pos_x + length/2 * np.cos(angle) - width/2 * np.sin(angle)
x1 = pos_y + length/2 * np.sin(angle) + width/2 * np.cos(angle)
y1 = pos_x - length/2 * np.cos(angle) - width/2 * np.sin(angle)
x2 = pos_y - length/2 * np.sin(angle) + width/2 * np.cos(angle)
y2 = pos_x - length/2 * np.cos(angle) + width/2 * np.sin(angle)
x3 = pos_y - length/2 * np.sin(angle) - width/2 * np.cos(angle)
y3 = pos_x + length/2 * np.cos(angle) + width/2 * np.sin(angle)
x4 = pos_y + length/2 * np.sin(angle) - width/2 * np.cos(angle)
y4 'Type'], x1, y1, x2, y2, x3, y3, x4, y4])
results.append([row[
return pd.DataFrame(results, columns=['class_index', 'x1', 'y1', 'x2', 'y2', 'x3', 'y3', 'x4', 'y4'])
= calculate_corners(df)
result_df result_df.head()
class_index | x1 | y1 | x2 | y2 | x3 | y3 | x4 | y4 | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0.000011 | 0.000083 | 0.000010 | 0.000082 | 0.000011 | 0.000081 | 0.000012 | 0.000082 |
1 | 1 | 0.000016 | 0.000084 | 0.000014 | 0.000083 | 0.000014 | 0.000082 | 0.000016 | 0.000083 |
2 | 1 | 0.000013 | 0.000073 | 0.000012 | 0.000072 | 0.000013 | 0.000071 | 0.000014 | 0.000072 |
3 | 1 | 0.000028 | 0.000076 | 0.000029 | 0.000074 | 0.000030 | 0.000074 | 0.000029 | 0.000076 |
4 | 6 | 0.000027 | 0.000084 | 0.000026 | 0.000084 | 0.000025 | 0.000084 | 0.000026 | 0.000084 |
= 8.458666666666666e-05
max_pos max_pos
8.458666666666666e-05
1:] / max_pos result_df.iloc[:,
x1 | y1 | x2 | y2 | x3 | y3 | x4 | y4 | |
---|---|---|---|---|---|---|---|---|
0 | 0.135314 | 0.982119 | 0.116864 | 0.965507 | 0.124775 | 0.956721 | 0.143224 | 0.973333 |
1 | 0.187538 | 0.991996 | 0.162509 | 0.981371 | 0.167128 | 0.970489 | 0.192157 | 0.981113 |
2 | 0.157206 | 0.863939 | 0.141385 | 0.846368 | 0.150171 | 0.838457 | 0.165992 | 0.856028 |
3 | 0.333921 | 0.897125 | 0.340347 | 0.873144 | 0.351766 | 0.876204 | 0.345341 | 0.900185 |
4 | 0.313380 | 0.987848 | 0.313194 | 0.998487 | 0.301374 | 0.998280 | 0.301560 | 0.987642 |
1:] result_df.iloc[:,
x1 | y1 | x2 | y2 | x3 | y3 | x4 | y4 | |
---|---|---|---|---|---|---|---|---|
0 | 0.000011 | 0.000083 | 0.000010 | 0.000082 | 0.000011 | 0.000081 | 0.000012 | 0.000082 |
1 | 0.000016 | 0.000084 | 0.000014 | 0.000083 | 0.000014 | 0.000082 | 0.000016 | 0.000083 |
2 | 0.000013 | 0.000073 | 0.000012 | 0.000072 | 0.000013 | 0.000071 | 0.000014 | 0.000072 |
3 | 0.000028 | 0.000076 | 0.000029 | 0.000074 | 0.000030 | 0.000074 | 0.000029 | 0.000076 |
4 | 0.000027 | 0.000084 | 0.000026 | 0.000084 | 0.000025 | 0.000084 | 0.000026 | 0.000084 |
0], result_df.iloc[:, 1:]) pd.DataFrame(result_df[:,
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
File /usr/local/lib/python3.11/site-packages/pandas/core/indexes/base.py:3805, in Index.get_loc(self, key)
3804 try:
-> 3805 return self._engine.get_loc(casted_key)
3806 except KeyError as err:
File index.pyx:167, in pandas._libs.index.IndexEngine.get_loc()
File index.pyx:173, in pandas._libs.index.IndexEngine.get_loc()
TypeError: '(slice(None, None, None), 0)' is an invalid key
During handling of the above exception, another exception occurred:
InvalidIndexError Traceback (most recent call last)
Cell In[1], line 1
----> 1 pd.DataFrame(result_df[:, 0], result_df.iloc[:, 1:])
File /usr/local/lib/python3.11/site-packages/pandas/core/frame.py:4102, in DataFrame.__getitem__(self, key)
4100 if self.columns.nlevels > 1:
4101 return self._getitem_multilevel(key)
-> 4102 indexer = self.columns.get_loc(key)
4103 if is_integer(indexer):
4104 indexer = [indexer]
File /usr/local/lib/python3.11/site-packages/pandas/core/indexes/base.py:3817, in Index.get_loc(self, key)
3812 raise KeyError(key) from err
3813 except TypeError:
3814 # If we have a listlike key, _check_indexing_error will raise
3815 # InvalidIndexError. Otherwise we fall through and re-raise
3816 # the TypeError.
-> 3817 self._check_indexing_error(key)
3818 raise
File /usr/local/lib/python3.11/site-packages/pandas/core/indexes/base.py:6059, in Index._check_indexing_error(self, key)
6055 def _check_indexing_error(self, key):
6056 if not is_scalar(key):
6057 # if key is not a scalar, directly raise an error (the code below
6058 # would convert to numpy arrays and raise later any way) - GH29926
-> 6059 raise InvalidIndexError(key)
InvalidIndexError: (slice(None, None, None), 0)
InvalidIndexError: (slice(None, None, None), 0)
Traceback (most recent call last):
File "/usr/local/lib/python3.11/site-packages/pandas/core/indexes/base.py", line 3805, in get_loc
return self._engine.get_loc(casted_key)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "index.pyx", line 167, in pandas._libs.index.IndexEngine.get_loc
File "index.pyx", line 173, in pandas._libs.index.IndexEngine.get_loc
TypeError: '(slice(None, None, None), 0)' is an invalid key
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/usr/local/lib/python3.11/site-packages/IPython/core/interactiveshell.py", line 3577, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-1-68438dd94aea>", line 1, in <module>
pd.DataFrame(result_df[:, 0], result_df.iloc[:, 1:])
~~~~~~~~~^^^^^^
File "/usr/local/lib/python3.11/site-packages/pandas/core/frame.py", line 4102, in __getitem__
indexer = self.columns.get_loc(key)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/site-packages/pandas/core/indexes/base.py", line 3817, in get_loc
self._check_indexing_error(key)
File "/usr/local/lib/python3.11/site-packages/pandas/core/indexes/base.py", line 6059, in _check_indexing_error
raise InvalidIndexError(key)
pandas.errors.InvalidIndexError: (slice(None, None, None), 0)
AI Prompt
how do I concat dataframes together again?
AI Response
To concatenate DataFrames in pandas, you can use pd.concat()
. Here’s the basic syntax:
# For side by side (columns)
= pd.concat([df1, df2], axis=1)
new_df
# For stacking (rows)
= pd.concat([df1, df2], axis=0) new_df
Would you like me to help you with a specific concatenation you’re trying to do?
= pd.concat([result_df.iloc[:, 0], result_df.iloc[:, 1:] / max_pos], axis=1)
nrm_df nrm_df
class_index | x1 | y1 | x2 | y2 | x3 | y3 | x4 | y4 | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0.135314 | 0.982119 | 0.116864 | 0.965507 | 0.124775 | 0.956721 | 0.143224 | 0.973333 |
1 | 1 | 0.187538 | 0.991996 | 0.162509 | 0.981371 | 0.167128 | 0.970489 | 0.192157 | 0.981113 |
2 | 1 | 0.157206 | 0.863939 | 0.141385 | 0.846368 | 0.150171 | 0.838457 | 0.165992 | 0.856028 |
3 | 1 | 0.333921 | 0.897125 | 0.340347 | 0.873144 | 0.351766 | 0.876204 | 0.345341 | 0.900185 |
4 | 6 | 0.313380 | 0.987848 | 0.313194 | 0.998487 | 0.301374 | 0.998280 | 0.301560 | 0.987642 |
AI Prompt
Now I have normalized points for bounding boxes. How can I visualize the boxes in an image?
AI Response
I can help you create a visualization of the bounding boxes using matplotlib. Here’s a simple way to visualize them:
import matplotlib.pyplot as plt
import matplotlib.patches as patches
# Create a figure and axis
= plt.subplots(figsize=(10, 10))
fig, ax
# For each box in the normalized dataframe
for _, box in nrm_df.iterrows():
# Create polygon using the four corners
= [[box.x1, box.y1],
corners
[box.x2, box.y2],
[box.x3, box.y3],
[box.x4, box.y4]]= patches.Polygon(corners, fill=False,
polygon ='r' if box.class_index == 1 else 'b',
edgecolor=2)
linewidth
ax.add_patch(polygon)
# Set the plot limits and aspect ratio
0, 1)
ax.set_xlim(0, 1)
ax.set_ylim('equal')
ax.set_aspect(
True)
plt.grid( plt.show()
Would you like me to explain any part of this code before you run it?
AI Prompt
How can I do this on top of an image?
AI Response
To draw the boxes on top of an image, we’ll need to modify the code slightly. First, you’ll need an image. Do you have an image you want to use as the background? If not, we could create a simple blank or random image using numpy.
Here’s how you would do it with an image:
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
# Create or load your image here
# For example, to create a blank white image:
= np.ones((100, 100, 3)) # white background
img # Or for random noise:
# img = np.random.rand(100, 100, 3)
= plt.subplots(figsize=(10, 10))
fig, ax # Display the image
ax.imshow(img)
for _, box in nrm_df.iterrows():
= [[box.x1, box.y1],
corners
[box.x2, box.y2],
[box.x3, box.y3],
[box.x4, box.y4]]= patches.Polygon(corners, fill=False,
polygon ='r' if box.class_index == 1 else 'b',
edgecolor=2)
linewidth
ax.add_patch(polygon)
plt.show()
Would you like me to help you: 1. Load a specific image from your system 2. Create a random background 3. Create a specific type of background
Which would you prefer?
AI Prompt
Boxes show up only when I do not show image. When I do ax.imshow(img)
, it does not show boxes anymore.
AI Response
Ah, this is likely because the image coordinates and your normalized coordinates are on different scales. When you use imshow(), the coordinates are based on pixel positions (0 to image width/height), while your box coordinates are normalized (0 to 1).
Let’s modify the code to scale the coordinates properly:
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
# Create a sample image
= np.ones((100, 100, 3)) # 100x100 white image
img = img.shape[:2]
height, width
= plt.subplots(figsize=(10, 10))
fig, ax
ax.imshow(img)
for _, box in nrm_df.iterrows():
# Scale the coordinates to image dimensions
= [[box.x1 * width, box.y1 * height],
corners * width, box.y2 * height],
[box.x2 * width, box.y3 * height],
[box.x3 * width, box.y4 * height]]
[box.x4
= patches.Polygon(corners, fill=False,
polygon ='r' if box.class_index == 1 else 'b',
edgecolor=2)
linewidth
ax.add_patch(polygon)
plt.show()
Try this version - does it show both the image and the boxes now?
AI Prompt
That worked! Thanks. There is a problem with an image, however. Image’s values range from 74 to 65535. Therefore, only certain pixels are displayed on on the image. Is there a way to have a slider to only display certain range of values? In jupyter notebook style.
AI Response
Yes! We can create an interactive visualization using ipywidgets that will let you adjust the display range with sliders. Here’s how:
from ipywidgets import interactive
import ipywidgets as widgets
def plot_with_range(vmin, vmax):
= plt.subplots(figsize=(10, 10))
fig, ax =vmin, vmax=vmax)
ax.imshow(img, vmin
for _, box in nrm_df.iterrows():
= [[box.x1 * width, box.y1 * height],
corners * width, box.y2 * height],
[box.x2 * width, box.y3 * height],
[box.x3 * width, box.y4 * height]]
[box.x4
= patches.Polygon(corners, fill=False,
polygon ='r' if box.class_index == 1 else 'b',
edgecolor=2)
linewidth
ax.add_patch(polygon)
plt.show()
# Create interactive slider
= interactive(
interactive_plot
plot_with_range,=widgets.IntSlider(min=0, max=65535, step=100, value=74),
vmin=widgets.IntSlider(min=0, max=65535, step=100, value=65535)
vmax
)
interactive_plot
This will create two sliders: - One for the minimum value (starting at 74) - One for the maximum value (starting at 65535)
Would you like me to explain how this works, or would you like to try it first?
AI Prompt
I think there is a way to do this using a decorator as well. How can you do this?
AI Response
Yes, you can use the @interact
or @interactive
decorator from ipywidgets. Here’s how:
from ipywidgets import interact
@interact(
=widgets.IntSlider(min=0, max=65535, step=100, value=74),
vmin=widgets.IntSlider(min=0, max=65535, step=100, value=65535)
vmax
)def plot_with_range(vmin, vmax):
= plt.subplots(figsize=(10, 10))
fig, ax =vmin, vmax=vmax)
ax.imshow(img, vmin
for _, box in nrm_df.iterrows():
= [[box.x1 * width, box.y1 * height],
corners * width, box.y2 * height],
[box.x2 * width, box.y3 * height],
[box.x3 * width, box.y4 * height]]
[box.x4
= patches.Polygon(corners, fill=False,
polygon ='r' if box.class_index == 1 else 'b',
edgecolor=2)
linewidth
ax.add_patch(polygon) plt.show()
This achieves the same result but with cleaner syntax. Would you like me to explain the differences between using @interact
and the previous interactive()
approach?
AI Prompt
How come it works just from defining a function?
AI Response
The @interact
decorator is actually doing quite a bit of work behind the scenes! Here’s how it works:
- When you use the
@interact
decorator, it immediately executes the function once when it’s defined - It wraps your function in a widget container that:
- Creates the sliders based on your parameters
- Sets up event listeners for when slider values change
- Automatically re-runs your function with the new values whenever the sliders move
So while it looks like “just defining a function”, the decorator is actually: 1. Creating an interactive widget interface 2. Binding your function to that interface 3. Displaying the result immediately
Would you like me to show you a simpler example that makes this more clear, or would you like to know more about how any specific part works?
AI Prompt
Can I train a neural net using yolo with nd2 images?
AI Response
Yes, you can train YOLO with nd2 (Nikon NIS-Elements) images! However, there are a few steps we need to consider:
First, we’ll need to convert/read the nd2 files into a format YOLO can use. We can use the
nd2reader
library for this.Then we’ll need:
- The images in a standard format (like PNG or JPG)
- The bounding box annotations in YOLO format
- A proper directory structure for training
Would you like me to help you get started with any of these steps? I can help you: 1. Set up the image conversion pipeline 2. Format your existing bounding box data for YOLO 3. Create the required directory structure
Which would be most helpful to start with?
AI Prompt
1
AI Response
Let’s set up the image conversion pipeline. First, we’ll need to install the nd2reader library if you haven’t already:
!pip install nd2reader
Would you like me to write a basic script to: 1. Read an nd2 file and show its contents 2. Convert nd2 to standard image format 3. Handle multiple nd2 files in a directory
Which would you prefer to start with? Also, do you have any specific requirements for the output image format (PNG, TIFF, JPG)?
AI Prompt
Why did you suggest TIFF? Can I train a model with TIFF?
AI Response
TIFF (Tagged Image File Format) is often used in scientific imaging because: 1. It supports higher bit depths (like 16-bit) compared to JPG or PNG (8-bit) 2. It’s lossless, meaning no image quality is lost during saving 3. It can preserve more of the original nd2 image data’s dynamic range
However, for training YOLO or most deep learning models, you typically want to: 1. Convert images to 8-bit (0-255 range) 2. Use a more common format like JPG or PNG 3. Keep file sizes manageable (TIFF files can be quite large)
Would you like me to explain more about image formats and their impact on training, or would you prefer to move forward with setting up the conversion pipeline using JPG/PNG?
AI Prompt
1,2,3
AI Response
I’ll help you create a script that handles all three tasks. Let’s break this down into steps.
First, here’s a script to read and process nd2 files:
from nd2reader import ND2Reader
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
from PIL import Image
def read_nd2_info(nd2_path):
"""Read and display information about an nd2 file"""
with ND2Reader(nd2_path) as images:
print(f"Sizes: {images.sizes}")
print(f"Channels: {images.channels}")
print(f"Frame count: {images.frame_count}")
return images.metadata
def convert_nd2_to_image(nd2_path, output_dir, format='PNG'):
"""Convert single nd2 file to images"""
= Path(output_dir)
output_dir =True)
output_dir.mkdir(exist_ok
with ND2Reader(nd2_path) as images:
for i, frame in enumerate(images):
# Normalize to 8-bit
= ((frame - frame.min()) * (255.0 / (frame.max() - frame.min()))).astype(np.uint8)
frame_norm
# Save image
= Image.fromarray(frame_norm)
img = output_dir / f"{Path(nd2_path).stem}_frame{i}.{format.lower()}"
output_path
img.save(output_path)
def process_directory(input_dir, output_dir, format='PNG'):
"""Process all nd2 files in a directory"""
= Path(input_dir)
input_dir = Path(output_dir)
output_dir =True)
output_dir.mkdir(exist_ok
for nd2_file in input_dir.glob('*.nd2'):
print(f"Processing {nd2_file}")
str(nd2_file), output_dir / nd2_file.stem, format) convert_nd2_to_image(
Would you like me to explain how to use these functions, or would you like to try them first? Also, do you have any specific requirements for: 1. How to handle multiple channels if present? 2. Image normalization method? 3. Output file naming convention?
AI Prompt
I have nd2 library installed. Can I do these things in that library?
AI Response
Yes! The nd2
library (different from nd2reader
) often provides better functionality. Let me show you the equivalent operations using the nd2
library:
import nd2
# Read and show info about an nd2 file
def read_nd2_info(nd2_path):
with nd2.ND2File(nd2_path) as images:
print(f"Sizes: {images.sizes}")
print(f"Channels: {images.channels}")
print(f"Attributes: {images.attributes}")
Would you like me to: 1. Show how to convert images using the nd2
library 2. Explain the differences between nd2
and nd2reader
3. Show how to handle multiple channels with nd2
Which would be most helpful?
AI Prompt
So, can I do all these with nd2 and turn it into jpg?
AI Response
Yes! Here’s how you can convert nd2 files to JPG using the nd2
library:
import nd2
from PIL import Image
import numpy as np
from pathlib import Path
def convert_nd2_to_jpg(nd2_path, output_dir):
= Path(output_dir)
output_dir =True)
output_dir.mkdir(exist_ok
with nd2.ND2File(nd2_path) as images:
for i, frame in enumerate(images):
# Convert to 8-bit
= ((frame - frame.min()) * (255.0 / (frame.max() - frame.min()))).astype(np.uint8)
frame_norm
# Save as JPG
= Image.fromarray(frame_norm)
img = output_dir / f"{Path(nd2_path).stem}_frame{i}.jpg"
output_path =95) img.save(output_path, quality
Would you like me to: 1. Show how to handle multiple channels if your images have them 2. Add options for different normalization methods 3. Show how to process multiple nd2 files at once
Which would be most useful for your needs?
AI Prompt
Actually, yolo works with tiff. how can I convert nd2 to tiff?
AI Response
You can convert nd2 to TIFF while preserving the bit depth. Here’s how:
import nd2
from PIL import Image
import numpy as np
from pathlib import Path
def convert_nd2_to_tiff(nd2_path, output_dir):
= Path(output_dir)
output_dir =True)
output_dir.mkdir(exist_ok
with nd2.ND2File(nd2_path) as images:
for i, frame in enumerate(images):
# Save as TIFF without converting to 8-bit
= Image.fromarray(frame)
img = output_dir / f"{Path(nd2_path).stem}_frame{i}.tiff"
output_path format='TIFF') img.save(output_path,
Would you like me to: 1. Add options for handling multiple channels 2. Show how to check/preserve the bit depth 3. Add batch processing for multiple files
Which aspect would be most helpful?
AI Prompt
How do I show a TIFF file?
AI Response
Here’s how you can display a TIFF file using matplotlib:
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
def show_tiff(tiff_path):
# Read the TIFF file
= Image.open(tiff_path)
img = np.array(img)
img_array
# Create figure
=(10, 10))
plt.figure(figsize
# Display with a colormap (you can try 'gray', 'viridis', etc)
='gray')
plt.imshow(img_array, cmap# Shows the intensity scale
plt.colorbar() f"Image shape: {img_array.shape}, dtype: {img_array.dtype}")
plt.title( plt.show()
Would you like me to: 1. Add interactive contrast adjustment (like we did before) 2. Show how to display multiple TIFF files side by side 3. Add more image information display
Which would be most useful?
AI Prompt
how can I do this with just one image?
AI Response
Here’s a simpler version for converting just one image from an nd2 file:
import nd2
from PIL import Image
import numpy as np
def convert_single_nd2(nd2_path, output_path):
# Read the first frame
with nd2.ND2File(nd2_path) as images:
= images[0] # Get first frame
frame
# Convert to 8-bit
= ((frame - frame.min()) * (255.0 / (frame.max() - frame.min()))).astype(np.uint8)
frame_norm
# Save as JPG
= Image.fromarray(frame_norm)
img =95)
img.save(output_path, quality
# Usage example:
# convert_single_nd2('your_file.nd2', 'output.jpg')
Would you like me to run this with your file? Just let me know the file path you want to use.
AI Prompt
I got a TypeError: 'ND2File' object is not subscriptable
.
AI Response
Ah, let me correct that. With the newer versions of the nd2
library, we need to use the frames
attribute to access the image data. Here’s the fixed version:
import nd2
from PIL import Image
import numpy as np
def convert_single_nd2(nd2_path, output_path):
# Read the first frame
with nd2.ND2File(nd2_path) as images:
= images.frames[0] # Use .frames to access the image data
frame
# Convert to 8-bit
= ((frame - frame.min()) * (255.0 / (frame.max() - frame.min()))).astype(np.uint8)
frame_norm
# Save as JPG
= Image.fromarray(frame_norm)
img =95)
img.save(output_path, quality
# Usage example:
# convert_single_nd2('your_file.nd2', 'output.jpg')
Try this version - does it work with your file now?
AI Prompt
now AttributeError: 'ND2File' object has no attribute 'frames'
AI Response
Let me help you debug this. First, let’s check what attributes and methods are available in your nd2 file:
import nd2
def inspect_nd2(nd2_path):
with nd2.ND2File(nd2_path) as images:
print("Available attributes:")
for attr in dir(images):
if not attr.startswith('_'): # Skip private attributes
print(f"- {attr}")
print("\nBasic info:")
print(f"Sizes: {images.sizes}")
print(f"Attributes: {images.attributes}")
# Usage example:
# inspect_nd2('your_file.nd2')
Can you run this with your file? This will help us see what methods we should use to access the image data correctly with your version of the nd2 library.
AI Prompt
Okay, I got the following as an output:
Available attributes:
- asarray
- attributes
- binary_data
- close
- closed
- components_per_channel
- custom_data
- dtype
- events
- experiment
- frame_metadata
- is_legacy
- is_rgb
- is_supported_file
- loop_indices
- metadata
- nbytes
- ndim
- ome_metadata
- open
- path
- read_frame
- rois
- shape
- size
- sizes
- text_info
- to_dask
- to_xarray
- unstructured_metadata
- version
- voxel_size
- write_tiff
Basic info:
Sizes: {'T': 72, 'Y': 1952, 'X': 1952}
Attributes: Attributes(bitsPerComponentInMemory=16, bitsPerComponentSignificant=16, componentCount=1, heightPx=1952, pixelDataType='unsigned', sequenceCount=72, widthBytes=3904, widthPx=1952, compressionLevel=None, compressionType=None, tileHeightPx=None, tileWidthPx=None, channelCount=1)
AI Response
Ah, now I see! For your version of nd2, we should use read_frame()
to access the image data. Here’s the corrected version:
import nd2
from PIL import Image
import numpy as np
def convert_single_nd2(nd2_path, output_path):
with nd2.ND2File(nd2_path) as images:
# Read the first frame (frame index 0)
= images.read_frame(0)
frame
# Convert to 8-bit
= ((frame - frame.min()) * (255.0 / (frame.max() - frame.min()))).astype(np.uint8)
frame_norm
# Save as JPG
= Image.fromarray(frame_norm)
img =95)
img.save(output_path, quality
# Usage example:
# convert_single_nd2('your_file.nd2', 'output.jpg')
I notice from your output that your file has: - 72 time points (T: 72) - 1952 x 1952 pixel resolution - 16-bit depth
Would you like to: 1. Try this version with a single frame 2. Modify it to handle a specific time point 3. See how to process all 72 frames?
AI Prompt
After saving the file, I want to take a look. How can I view the jpg image?
AI Response
You can view the JPG image using matplotlib. Here’s how:
import matplotlib.pyplot as plt
from PIL import Image
def view_image(image_path):
# Read and display the image
= Image.open(image_path)
img =(10, 10))
plt.figure(figsize='gray') # 'gray' colormap for scientific images
plt.imshow(img, cmap'on') # Show axes/scale
plt.axis(# Add a colorbar
plt.colorbar()
plt.show()
# Usage example:
# view_image('your_output.jpg')
Would you like me to: 1. Add interactive zoom capabilities 2. Show how to adjust contrast/brightness 3. Display multiple frames side by side
Which would be most helpful?
csv to txt
AI Prompt
So, I have a csv file that I want to do some mathematical operations and save as text file. Can I do these without creating a pandas dataframe?
AI Response
Yes, you can process a CSV file directly using Python’s built-in csv
module and basic file operations. Here’s a basic approach:
from pathlib import Path
import csv
def process_csv(csv_path, output_path):
with open(csv_path) as f_in, open(output_path, 'w') as f_out:
= csv.reader(f_in)
reader next(reader) # Skip header if needed
for row in reader:
# Do your math operations here on row elements
# Example: multiply first column by 2
= float(row[0]) * 2
result # Write to text file
f"{result}\n") f_out.write(
Would you like me to: 1. Adapt this for your specific mathematical operations 2. Show how to handle different CSV formats 3. Add error handling for invalid numbers
Which would be most helpful?
AI Prompt
what does it mean # Skip header if needed
? Why is this required?
AI Response
CSV files often have a header row at the top that contains column names rather than data. For example:
Name,Age,Score
John,25,95
Mary,30,88
When we use next(reader)
, it reads and skips the first row (“Name,Age,Score”), so our calculations start with the actual data (“John,25,95”).
If we didn’t skip the header and tried to do math on it (like float("Name") * 2
), we’d get an error because “Name” isn’t a number.
Would you like me to show you: 1. How to check if your CSV has a header 2. How to make the header skipping optional 3. How to use the header information in your processing?
AI Prompt
I want to change the extension of a file but have all the full directories. stem
only returns the name of the file.
AI Response
Ah, to keep the full directory path and just change the extension, you can use with_suffix()
on the full Path object. Here’s how it works:
from pathlib import Path
= Path('folder/subfolder/myfile.csv')
p = p.with_suffix('.txt')
new_p
print(f"Original: {p}") # folder/subfolder/myfile.csv
print(f"New path: {new_p}") # folder/subfolder/myfile.txt
The with_suffix()
method preserves the entire path structure and only changes the file extension. Would you like me to show you how to integrate this into your file processing function?
AI Prompt
Here’s my function:
def process_csv(csv_path, output_path=None, header = True):
"""Convert nm format from csv into ratio format for yolo"""
output_path = output_path or Path(csv_path).with_suffix('.txt')
with open(csv_path) as f_in, open(output_path, 'w') as f_out:
reader = csv.reader(f_in)
if header: next(reader) # Skip header if needed
for row in reader:
length = float(row[1])
width = float(row[2])
angle = float(row[3])
pos_x = float(row[4])
pos_y = float(row[5])
x1 = pos_x + length/2 * np.cos(angle) - width/2 * np.sin(angle)
y1 = pos_y + length/2 * np.sin(angle) + width/2 * np.cos(angle)
x2 = pos_x - length/2 * np.cos(angle) - width/2 * np.sin(angle)
y2 = pos_y - length/2 * np.sin(angle) + width/2 * np.cos(angle)
x3 = pos_x - length/2 * np.cos(angle) + width/2 * np.sin(angle)
y3 = pos_y - length/2 * np.sin(angle) - width/2 * np.cos(angle)
x4 = pos_x + length/2 * np.cos(angle) + width/2 * np.sin(angle)
y4 = pos_y + length/2 * np.sin(angle) - width/2 * np.cos(angle)
# x1, y1, x2, y2, x3, y3, x4, y4 = map(lambda o: o/max_pos, [x1, y1, x2, y2, x3, y3, x4, y4])
for o in [x1, y1, x2, y2, x3, y3, x4, y4]:
o = o/max_pos
if o < 0: o = 0
if o > 1: o = 1
f_out.write(f"{row[9]} {x1} {y1} {x2} {y2} {x3} {y3} {x4} {y4}\n")
When I write txt file, operations I do in the inner for loop does not take affect. What is happening?
AI Response
The issue is that the o = o/max_pos
operation in your loop creates a new local variable o
and doesn’t modify the original values. Python numbers are immutable, so assigning to o
doesn’t change the original variables (x1, y1, etc.).
Here’s the corrected version:
def process_csv(csv_path, output_path=None, header=True):
= output_path or Path(csv_path).with_suffix('.txt')
output_path with open(csv_path) as f_in, open(output_path, 'w') as f_out:
= csv.reader(f_in)
reader if header: next(reader)
for row in reader:
= float(row[1])
length = float(row[2])
width = float(row[3])
angle = float(row[4])
pos_x = float(row[5])
pos_y = pos_x + length/2 * np.cos(angle) - width/2 * np.sin(angle)
x1 = pos_y + length/2 * np.sin(angle) + width/2 * np.cos(angle)
y1 = pos_x - length/2 * np.cos(angle) - width/2 * np.sin(angle)
x2 = pos_y - length/2 * np.sin(angle) + width/2 * np.cos(angle)
y2 = pos_x - length/2 * np.cos(angle) + width/2 * np.sin(angle)
x3 = pos_y - length/2 * np.sin(angle) - width/2 * np.cos(angle)
y3 = pos_x + length/2 * np.cos(angle) + width/2 * np.sin(angle)
x4 = pos_y + length/2 * np.sin(angle) - width/2 * np.cos(angle)
y4
= [x1, y1, x2, y2, x3, y3, x4, y4]
coords = [max(0, min(1, c/max_pos)) for c in coords]
coords
f"{row[9]} {' '.join(str(c) for c in coords)}\n") f_out.write(
The key changes: 1. Create a list of coordinates 2. Process them using a list comprehension 3. Use max/min to clamp values between 0 and 1 4. Join the processed values into the output string
Would you like me to explain any part of these changes in more detail?
AI Prompt
Wow very interesting way of doing list comprehensions. I love you
AI Response
Thanks for the kind words! Yes, list comprehensions in Python are quite elegant. They can make your code more readable and efficient. Instead of explicit loops, you can express transformations in a more mathematical way.
Some other cool list comprehension patterns you might find useful:
# Filter and transform
for x in items if condition]
[x
# Multiple operations
for x in items if g(x)]
[f(x)
# Nested operations
for x in xs for y in ys] [f(x,y)
Would you like to see more examples of how list comprehensions could simplify other parts of your code?